Terahertz Light-Matter Interaction beyond Unity Coupling Strength.
نویسندگان
چکیده
Achieving control over light-matter interaction in custom-tailored nanostructures is at the core of modern quantum electrodynamics. In strongly and ultrastrongly coupled systems, the excitation is repeatedly exchanged between a resonator and an electronic transition at a rate known as the vacuum Rabi frequency ΩR. For ΩR approaching the resonance frequency ωc, novel quantum phenomena including squeezed states, Dicke superradiant phase transitions, the collapse of the Purcell effect, and a population of the ground state with virtual photon pairs are predicted. Yet, the experimental realization of optical systems with ΩR/ωc ≥ 1 has remained elusive. Here, we introduce a paradigm change in the design of light-matter coupling by treating the electronic and the photonic components of the system as an entity instead of optimizing them separately. Using the electronic excitation to not only boost the electronic polarization but furthermore tailor the shape of the vacuum mode, we push ΩR/ωc of cyclotron resonances ultrastrongly coupled to metamaterials far beyond unity. As one prominent illustration of the unfolding possibilities, we calculate a ground state population of 0.37 virtual photons for our best structure with ΩR/ωc = 1.43 and suggest a realistic experimental scenario for measuring vacuum radiation by cutting-edge terahertz quantum detection.
منابع مشابه
Strong coupling between mid-infrared localized plasmons and phonons.
We numerically and experimentally demonstrate strong coupling between the mid-infrared localized surface plasmon resonances supported by plasmonic metamaterials and the phonon vibrational resonances of polymethyl methacrylate (PMMA) molecules. The plasmonic resonances are tuned across the phonon resonance of PMMA molecules at 52 THz to observe the strong coupling, which manifests itself as an a...
متن کاملUltrafast optical modification of exchange interactions in iron oxides
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the ...
متن کاملLight-matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect.
Improvements in both the photonic confinement and the emitter design have led to a steady increase in the strength of the light-matter coupling in cavity quantum electrodynamics experiments. This has allowed us to access interaction-dominated regimes in which the state of the system can only be described in terms of mixed light-matter excitations. Here we show that, when the coupling between li...
متن کاملUltrawide electrical tuning of light matter interaction in a high electron mobility transistor structure
The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically...
متن کاملWeak-coupling expansions for the attractive Holstein and Hubbard models.
Weak-coupling expansions (conserving approximations) are carried out for the attractive Holstein and Hubbard models (on an infinite-dimensional hypercubic lattice) that include all bandstructure and vertex correction effects. Quantum fluctuations are found to renormalize transition temperatures by factors of order unity, but may be incorporated into the superconducting channel of Migdal-Eliashb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2017